[Documentation] [TitleIndex] [WordIndex

Result of the VisualNet for the moving cupboard door

The main task of the Visual Net is the segmentation of the whole set of 2D feature points tracked between frames into an unknown number of clusters.

The Visual Net provides two core components: clustering of features according to different criteria (represented by so-called predictors) and 3d estimation of the clustered features using structure from motion. However, structure from motion can be switched off if a 3d sensor such as kinect is used.

Package Description

The package contains only one node, called visual_net. In the following we explain which parameters can be set, and how to handle input and output data.

Information Flow

Parameters

/number_features

/video_sensor_type

/min_cluster_size

/min_motion

/min_global_motion

/segmenting_in_3d

/visual_net/external_trigger

/3d_from_sensor

If /3d_from_sensor is true, visual net also expects data from the following topics: /video_height /video_width /focal_length

Predictors and parameters:

/visual_net/use_rm_predictor

/visual_net/rm_min_dist

/visual_net/use_rm3d_predictor

/visual_net/rm3d_min_dist

/visual_net/use_fm_predictor

/visual_net/fm_num_hypo

/visual_net/fm_num_trials_per_hypo

/visual_net/use_sd_predictor

/visual_net/sd_min_dist

/visual_net/use_ld_predictor

/visual_net/ld_min_dist

/visual_net/ld_max_dist

/visual_net/use_t_predictor

/visual_net/use_csegm_predictor

/visual_net/use_csimil_predictor

ROS Subscribers

/iap/feature_set_2d

/iap/feature_set_3d

/iap/visual_net/run_segm_and_sfm

ROS Publishers

/iap/segmentation

/iap/estimated_feature_set_3d

ROS Services

None.

ROS Messages

None. See iap_common.


2022-05-28 13:07